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the transverse cross section, the torsional moment takes its limiting value 

(2.2) 

The relation connecting the torsional moment M with the twist 8 (M, and 8, are limitingvalues 
of the corresponding quantities, and K is the torsional rigidity within the elastic limits) 

is shown in Fig-Z. The dashed lines show the values of m(q) for the rectangular cross sect. 
ions, with numbers accompanying the lines describing the ratios of the sides. The half-moons 
correspond to the Weber profile shown in the same figure. The smail circles show the results 
for the corresponding cross sections with a ratio of the internal to external radii equal to 
0.9, and the dark circles refer to the values of m for rods of circular transverse cross sect- 
ion. 

The computations show that the curves determining the relationship m(m) are contained 
within the zone shown in Fig.2 with thick lines. When the twist 8 is increased, the plastic 
zones in which the assumptions made hold exactly, also increase and the magnitude of the tor- 
sional moment tends to its exact value (2.2). 

we note that the largest error in determining the torsionalmomentusingthe formulas given 
occurs at the yield point. Comparing the values of M, with the known exact solutions we find 
that the maximum error is small in the case of simple rods. For prismatic rods of elliptical 
and rectangular cross section the error does not exceed 3% and 5%, respectively, and for the 
Weber profile (Fig.2) 1.5%. We note that the torsional moment of a rod of rectangular cross 
section is determined in /4/ using a more complicated method, yet achieving the same accuracy 
as in the present paper for a ratio of the sides equal to 0.2 and 0.4. In /5/ the results 
for a square transverse cross section fall below the limit curve and cannot therefore be re- 
garded as possible. 
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EXTENSION OF THE VARIATIONAL ffORMULATION OF THE PROBLEM FOR A RIGID-PLASTIC 
MEDIUM TO VELOCITY FIELDS WITH SLIP-TYPE DISCONTINUITIES* 

G.A. SEREGIN 

Sets of velocity fields containing slip-type discontinuities at the 
boundary of the rigid-plastic medium, as well as within it, and the 
functionals defined on these sets, are described. It is shown that 
the exact lower bounds of the variational problems for these functional9 
are equal to the coefficient of the critical load. The minimax 
problemwith saddle point constructed here is regarded as an extension of 
the classical minimax problem of the theory of critical loads. 
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It is well-known that the classical variational formulation of the problem of determining 
the velocity field corresponding to the critical equilibrium state of the rigid-plastic medium 
is ill-posed in the following sense. In a number of problems there are no smooth velocity 
fields on which the critical load can be realized (see e.g. /l, 2/). This creates difficult- 
ies in computing, since minimizing sequences of the smooth velocity fields must then be used 
at the limit at which the classical functional determining the upper bound for the critical 
load coefficient is not defined. A correct formulation of the corresponding variationalproble 
can be obtained directly from the abstract extension scheme formulated in /3/. The results of 
subsequent investigations of the problem were given in /3/ (for more detail see /l/). As was 
said in /l/, the variational extensions obtained in these papers cannot be regarded as final 
and effective, since it is desirable to express them not in terms of the measures, but in 
terms of the vector function of a point. A development of the classical variational problem 
which can yield a number of useful practical corollaries is given below. 

1. Basic notation and formulation of the problem. We denote by hl a region of 
Euclidean space R"(n = 2,s). We assume that the region is bounded and has a boundary I? which 
satisfies the Lipshits condition. We denote the velocity field by u =(I+) and the strain 
r;t; tensor by s (u) = (et, (u)). If a Cartesian coordinate system is chosen, then 2&,(u) = ui,, + 

* * We denote the stress tensor by Q = (01~) and its first invariant and deviator by ukh. 
and an . We define the velocity field spaces which will be used below, as follows: 

(1.1) 

The differential operator sij (a) is regarded as a distribution, i.e. for any continuous dif- 
ferentiable function cp with a compact support in D H 

S (uip.j + ujv.1) dz = - 2 S ejj (u) 9 dz 
P P 

The functional space D”(Q) h as the following properties: 
a) smooth functions are dense in the space D2(62) on its norm; 
b) the space D*(S2) imbeds completelyand continuously into the spaces of summable vector 

functions ~5'(fJ)~ for rE[l,nl(n-I)], and continuously in Lnl(n-1) (Q)"; 
c) vector functions belongingto Dz(Q) have summable traces on I', or more accurately, 

the space D*(Q) imbeds continuously in Ll(I')". 
We shall study the 

ing class: 

We will denote by K the 
ity) 

K= 

stress fields defined by symmetric second rank tensors in the follow- 

Z = {Z: t = (Tij), Tij = Tjir Tkk E L* (S2) (1.2) 

TijD E L” (Q), i, j = 1,. . ., n) 

set of all 'r E 2 satisfying the Mises condition (k, is a given quant- 

(r~ X:IzD(r)l< l/zk, for nearly all ZE Q] 

We assume that the field of distributed loads f = (fi) is specified in h2 , a field of surface 
loads F = (FJ is defined on a part of the surface Y , and 

fiEL"(Q, FiELm(y), i = 1,...,n (1.3) 

Consider the set of admissible velocity fields 

v = {VE D2(h2):div v = OinQ, v = 0 onr \ y, S fividx+SSFiOidr=i) 
Q v 

We know (see e.g. /l/) that the critical load coefficient h, is found for the rigid-plastic 
medium from the solution of the following minimax problem: 

k*Eitf’TpS eij(V)TijdX=SQ&pi:fS t?ij(v)rjjdX 
Q Q 

(1.4) 

Introducing the notation 

J (v) I S,“p S eij (0) Tij dt = 1/Zk* S 1 E (v) ) dt 

Q Q 

R(r)= inf S Eij (U) T{ j CZX 

VQ 
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we find that the functionals J(v) and R(t) yield, respectively, the upper and lower bound 
for the critical load coefficient h,. and 

h *=i;fJ(u)=;aHR(z)=R(r*) 

Replacing sup by max means, as usual, that an element z* EK exists on which the exact 
upper bound of the functional R is attained. For the functional J, replacing inf by min is, 
generally speaking, incorrect, since the set V need not contain the velocity field realizing 
its exact lower bound. This is due to the fact that the class V does not contain velocity 
fields describing slip-type discontinuities. f4oreover, the functional J itself is not defined 
on such fields. All this causes considerable difficulties in obtaining upper estimates for 
the critical load coefficient. Below, we construct the functionals @ and associated veloc- 
ity fields V, containing a wide class of fields with discontinuities. The functionals @ on 
Vo will yield the upper bounds for the critical load coefficients. The bounds will be exact 
in the sense that the lower exact bound of the functional $I on Vu, is equal to the critical 
load coefficient. 

The practical value of such functionals is as follows. First, the contraction of 0 on 1' 
yields the functional J, hence the upper bound which yields J can be obtained using the func- 
tional @ . Secondly, the functional@ contains more parameters which can be changed, and 
this gives greater freedom in constructing the upper bounds for A,. Thirdly, computing the 
functional @ on the discontinuous fields is not more difficult than computing the functional 
J on smooth fields. The last factor is very important since the upper bounds obtained on the 
discontinuous velocity field reduce chiefly to a limiting passage on a sequence of smooth 
fields converging, in a sense, to the discontinuous velocity.field. In fact, such a limiting 
passage is carried out in the present paper in general terms, and this makes it unnecessary 
to perform the operation in every particular case. In Sect.2 we give an example in which the 
use of the above procedure enables us to obtain an exact value of the critical load on the 
discontinuous field. 

Let us describe the general plan for constructing the functionals @ and sets VQ on 
which they are defined. A major role is played here by the minimax problem with a saddle 
point, and the value of the corresponding Lagrangian at this saddle point is of the same accur- 
acy as the critical load coefficient. The problem can be called a mathematical extension of 
the Lagrangian 

S Eij (II) Tij dt 
Q 

and its saddle point can be called the generalized solution of the problem (1.4). However, 
the set of variations of dual variables constructed in this problem, although containing all 
possible discontinuities and smooth velocity fields, is not easy to use in practice. It is 
therefore advisable to separate out certain classes of discontinuities and obtain the inter- 
mediate sets of velocity and stress fields containing the smooth fields. Computing the values 
of the extended Lagrangian on these intermediate sets, we arrive at the functions @. Their 
lower bound on these sets is equal to critical load coefficient. 

2. Main results. Let the surface r0 divide the region R into two regions 61' and 6?, 
each possessing a boundary satisfying the Lipshits condition. Let us denote by v1 = (vi') and 
v2 = (vi") the unit outward normals to the surface bounding the regions Ql and P , respectiv- 
ely, and by v = (vi) the outward unit normal to the surface r . Consider a class of functions 

v (F,, V) of the following type: 

V (r,, y) = {(u, w): u = v’ E 0% (Ql), if r E Q' (2.1) 

u = v2 E D2 (W), if 5 E 82; vilvil + Ui%iZ = 0 

on ro, vivt = 0 on I’ \ y; div v = OinQ; 

w E Dz (Q); wiv; = vivi on y, w = 0 on I' \ y; SnfiUidl+S~il~idl?=Ij 
Y 

We note that the class v (Fci* v) is non-empty since (v,v)E V (r,, y) for any VE v. Theclass 

of functions v(ro,Y) contains velocity fields which may have slip-type discontinuities on 
the surfaces r0 and r. The subclass of the class v (rO, v) for which vED* (Q), will be 

denoted by V(y) . Putting 

S(V,u)=~(viUj+ VjUi) 

we determine the functionals @r.. Y and dam on the classes V(I’,,y) and V(y), as follows: 

u+&1L’)qm*(S IE(uqdx+s IE(u”)Idx+ 
Ql Q= 

(2.2) 
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s Is(v’.cl)$ S(v2,u2)1dro+SIS(V,V--U’)(dr + s (S(v,u)ldr), v(L.:w)EV(rO-Y) 
ru v l-\-i 

~v(~,“)=1/21;,(Sl~(~)ldt:+S(s(~,~--)(dr -1. S ~s(\-.~)ldr), ~(u,w)E~(Y) 
P Y I-\? 

We have the following assertions (for the proof see Sect.3): 

(2.3) 

We note that the value of the exact lower bound of the functional Q'r.,v on the set Ii (r,, v) 

is independent of the choice of rO. Thus when the upper bounds are constructed for k, using 
the functional @r.,~ , we have three parameters U,W and r0 compared with a single parameter 

U when the functional J is used. 
We illustrate the use of the functionals constructed above by considering the following 

standard plane problem. An annulus is given, the outer boundary of which is clamped and the 
inner boundary subjected to tangential forces of intensity equal in magnitude to the yield 
point of the material. In such a problem h, is estimated to have a lower bound of unity, 
with the help of the axisymmetric stress field of special type (see below). Indeed, h, =: 1 
but, as was shown in /2/, no velocity field belonging to class v exists on which the funcional 
J would take a value equal to unity. This implies that the proof of the fact that h, = 1 
using the functional J and class V only, is of a very tenuous character and based on constru- 
cting a special sequence of velocity fields belonging to class V on which the value of the 
functional J would tend to unity. Using, however the class v(y) and functional 0, , we can 
show by elementary methods that h, = 1. 

We will present the relevant arguments. We introduce the polar p,8 -coordinates with 
the pole at the centre of the annulus, and we have O<R,BpfR,,Od~<Zn for the points of 
the annulus. We use the following notation: 

In the present case y is the inner boundary of the annulus and f= 0, F= (0, k,). Let us put 

Then we can establish that R (7.) = i and hence A; > 1. Let us take V. = 0, (D. = (ZnR,)-'(O,cp (P)) 
where 9 is a function continuously differentiable in [R,, ii,1 and such, that cp(R,) = 1 and 
q(R,)= 0. It is clear that the pair (v.! IQ)C V (y) and 

0 1 
S (v, WA= -(~R&P i o on y R R 

Then 

and we have h,P. 1. 

‘l$ (o,,lo,)=)/2k.SIS(v,Irt,)Idr=12h. 

Y 

3. Proof of the results. We denote by pY the Lebesgue surface measure defined in 
the usual manner on the surface y SatisfyingtheLipshits condition, by 8, the u-algebra of 
the subset y measured with respect to t+, and by ba(y,&,Q the Banach space of all finit- 
ely additive functions cp defined on Zy which have a bounded variation on y and perfectly 
continuous with respect to the measure pIl (i.e. if voE & and ~,,(~,,) = 0, then the varia- 
tion of cp on y0 is also equal to zero). Then we find the integral of the function go L-(y) 
over the finitely additive function cp E ba(y, &, ),+) and the functional 

g-S& 
Y 

is a continuous linear functional on L"(y). Moreover, the space conjugated with Lm (7) is 
isometrically isomorphic to the space 
as the norm of the latter /4/. 

ba (v, Z,, pV) if the total variation of cp on y is taken 
We shall denote the norm in Sobolev space W,l(a)" by 111 l 111. 

and write 

V, = {vEP(Q): v = 0 on r \ y}, I'_ = {uE IV,' (W: v = 0 on r \ y} 
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Let us suppose that y is distributed on r in such a manner that V_ is dense in T/+ on the 
norm of the space D'(Q. This condition holds automatically if y =a or y = r. Next we 
define two basic spaces shich will be used in the theorem on extension 

U = {(l&f Cp): 11 = (Ui), ‘p = (q,i), Ui E 23”“‘‘-‘) (Q), 

(pi E ba(y, Z,, py), i = 1, . . ., n, div II = 0 in Q, 

%fi”idz +SFtdTicl} 
Y 

G = ((2, 6): r = (it,), g = (gt), z E K, 

gi E Lm (Y)* W, j E L” (a), i, j = 1, . . ., It, 

SgiVidr"S(e*j(V)7ij+Vigj,j)dll VUUVJ 
Y P 

The differential operator 7ij.j appearing in the definition of the space G must be regarded 
as a distribution. Let US consider the extended Lagrangian 

on the set U x G . 

Theorem. With the assumptions made above, the Lagrangian L has, on the set U x G , a 
saddle point (u, Y)E U, (a, h)G G such that 

L (u, Y; 7, g) Q L (4 Y; (J, h) < L (v, ‘p; 0, 4 (3.1) 

for any pair (v, (P)E U and any pair (T, g)E G, and 

I, = L (u,Y; u, h) =sup L (u,Y;r, g) = miUn su,p L (v, (p; T. e) (3.2) 
G 

Proof. We define the following auxilliary sets: 

K,, = {r E K: qk (X) = 0 for nearly all X E a} 

v, = {VE v: IIIVIII Q m) 

By virtue of the standard theorems on saddle points (see e.g. /5/), a saddle point of the 
Lagrangian 

z (0, T) = S eij (v) T+j dx 
!l 

exists on the set V, x K,, such that 

1 (U,, X) < 1 (&II, Tm)Q 1 (V, r,), U, E v,, rm E Ko 

for any u E V,, T E K, , From inequality (1.3) it follows that 

J(u,)= rnt J (U)=:Z(U,,T,) 

(3.3) 

(3.4) 

This means that the sequence U,,, has a uniformly bounded norm in DZ(Q). Let us write 

cp,(vo)=~ Umdr, VYOE~V 
9. 

Then mm E bn (y, 2~~ I+)” and the norms of cp, are uniformly in m and be(y, z,, pv)". We can 
therefore choose the stresses such that /4/ 

Uu-;;U weakly in Lnlcnel)(Qn 

(p,-;;Y (*)- weakly in ba(y,Z,, pV)" 

r,y~,~ K, (a)- weakly in Lm((P)n("+l)'z 

(3.5 1 

Here A is an ordered set directed so as to increase. If (7, g)E G, then we have 

1 (U,, X) = L (Ufn, (pm; '5, g) (3.6) 

Passing to the limit in inequality (3.3) and taking into account (3.4)-(3.61, we obtain 

L(u,p;z,g).<infJ(u)S l(U,$) (3.7) 
V. 



for any (r,g)EG and for any function vE V, where V, = V n WZ’ (g)“. We also have (u, 

Y) E u since div u = 0 in 9 and 

S fiuidx+SFidYi=l 
a Y 

From the right-hand side of inequality (3.7) it follows that a number h, exists such that 

l(V,T*)=ho(ifiVidz t- S F<vidr), VvEV, (3.8) 
Y 

V, = {V E V_: div v = OinQ) 

h,,<infJ(v)<ho 
v. 

(3.9) 

In particular, the identity (3.8) holds for any solenoidal field from W,l(Si)” which vanishes 
on r , and in this case a function p E La(Q) exists such that /6/ 

S (p div V + Eij (V) Z*ij) C?Z = 5 5 frvc dz 
n P 

(3.10) 

for any function vE W,l(Qn whose trace on I' is equal to zero. Let US put U = (pS*j +T*ij). 

Then 
u E K, (J{~,, = -&fi E L” ($2) (3.11) 

It can be shown that 

Z(v,~)=)LO(Sfiv~dt+SF*v(dll)r Vv~t’, (3.12) 
Q Y 

By virtue of the density conditions imposed, it is sufficient to establish (3.12) for any func- 
tion VB~ V_. Let D be any field belonging to V_, but such that 

Svp(dr=O (3.13) 
Y 

A solenoidal field USE W',l(Q)" exists such that UO= 0. Considering the relation (3.10) for 
the function V- L@ taking identity (3.8) into account, we find that (3.12) holds for the 
chosen field V. If u is any field belonging to V_, then we assume that the function p satis- 
fying (3.10) is defined apart from a constant term. Let us write p in the form 

P=Pofc* ~P&==0 

P 

and choose c so that (3.12) holds. We choose a function U,E V-,such that 

i divu,dz=cl#O 

If there is no such function in V_ , then the previous situation can be used to confirm (3.12), 
since in this case (3.13) holds for any function VEV_. Let us put 

Writing u in the form 

we find that the field V' satisfies the condition (3.13) and 

1 (b G) - x0 cj Fiji dl+ $ ‘iui dr) = + 5 uiv+ dr 11 (u.7 a*) - 

,.(sii.*id=+$~i~*~dr)+~~di”~~d=l =0 
Y 

which completes the proof of (3.12). 
From (3.11), 

finally 
(3.12) it follows that (a, h)EG , if h = h,F. Moreover, h, = h, and 

h, = L (v, 'p; (J, h)l v (0, rp) E u (3.14) 

Relations (3.14) and the left-hand side of the inequality (3.7) now prove the theorem, and 
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relations (2.3) follow 

Let us obtain an upper estimate of s;P.&(v,rp,;t,g). To show the purpose of this estimate, we 

from it. Indeed, if (~3, W) 5 pi (r,, p), then the pair 

$Jp,(yo) =$ WdF. vyo= s 
2'. 

(u, T’w) = C where 

assume for simplicity that the region Q in star-like relative to one of its points. Let (z,g)~ 
G. Then a sequence of symmetric tensor fields tm exists such that 

$ - *kk strongly in L%(Q) (3.15) 
Drn 

Tfj - 7: (*)- weakly in Lrn (V) 
7;,-7; j strongly in L" (R) (i, j = 1,. .( a) 
t”EC=(a), TmEK a> 

To construct such a sequence it is sufficient to carry out the following operations; we place 
the origin of coordinates at the centre of the star-shaped region Q , continue the tensor T 
by means of a similitude transformation, with the centre at the star, to the region obtained 
from Q by applying the same similitude transformation. Then the sequence shown in (3.15) can 
be constructed using the averages of the contribution of the tensor T using standard averaging 
kernels /7/. We further have 

L(v. 'p,; P,g) = -s uitij,jm dz + jqoi dI' = c $ij (u')~~>"'dz + 

s pii(v')4jmdx:~ ~i,"(s,j(~Vu~)iSijP:l,C1))dPa_ 
524 l-r 

SrijmSij(v,v-w)dI’- s tijtnSij(v,o)dr+S(gj-vjrijm)widr 
Y P\Y V 

By virtue of the definition of the class V(l',, y) the first invariants of the tensors S(v', ul)+ 
s (v?. ~2)‘ S (v, it - W) and s (v, U) are zero on ro,y and r\~ , respectively. Since PEK, we 
arrive at the inequality 

According to the definition of the class v (r,,~) the vector function WE C'+. Therefore 
by virtue of (3.15) and the definition of the class G, we obtain 

S(gj--jSij~)widr=S(Wi(Tij,j-t:~,j)3-’ij(W)(tij-rij~))~/z-_O 
v St 

But since L (v, 'p& T”‘. g)- L (u, (p,& 7, g), we finally have 

L (v, rpo; T, g) < @r,,y (0, (0)s V (7. g) = G 

The latter inequality leads to the estimate 

"UtiP L (0, 'P& 7, 6) < Qr,,y (y. @) 

From the estimate (3.16) and statement (3.2) of the theorem 

and the inverse inequality is obvious. This proves (2.3). 
igations lead to the conclusion that we have an equality in 

We note that more detailed invest- 
relation (3.16). 

In the general case the existence of a sequence possessing the properties shown in (3.15) 
is proved by standard methods, since the region whose boundary satisfies the Lipshits condi- 
tion is locally star-like. Remembering #at 5 is compact, we can use finite division of 
unity in Za to reduce everything to a region that is star-like with respect to one of its 
points. 

(3.16) 

it follows that 

1. 
2. 

3. 

4. 
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TIME DIFFERENTIATION OF TENSORS DEFINED ON A SURFACE MOVING THROUGH A 
THREE-DIMENSIONAL EUCLIDEAN SPACE* 

1U.Z POVSTENKO and 1A.S. PODSTRIGACH 

The well-known formulas for the derivatives of Eulerian and Lagrangian 
basis vectors are used to derive expressions for the derivatives of the 
surface, volume and double tensors defined on a surface moving through 
an Euclidean space. In the case of a plane moving through space with 
constant velocity, the results obtained correspond to the two-dimensional 
analogs of the results obtained in /l/. A relation connecting the derivat- 
ives in question with the derivative (Wit) is given, and the concept of 
the derivative (I%%) is introduced for the three-dimensional case. 

In /l/ the author developed a theory of the time differentiation of tensors in the three- 
dimensional case, based on introducing Euclidean and Lagrangian basis vectors and a polyadic 
renresentation of tensors in these bases. The problem of the time differentiation of tensors 
was also considered in /2, 3/ 
earlier work was also given. 
tinuous media, the derivative 
on a surface moving through a 
introduced. The results were 
defined on a moving surface. 

using a general formulation, where a detailed analysis of the 
In /4-61, in the course of studying wave propagation in con- 
(@fir) of the components of three-dimensional vectors defined 
three-dimensional Euclidean space (at the wave front) was 
generalized in /7/ to the case of surface and dual tensors 

1. The law of motion of 
bed by the equations 

the points belonging to a three-dimensional continuum is descri- 

zi = a+ (E', E*, P, t), Ek = Ek (z', za, 9, :) (1.1) 

where zi are the spatial (Eulerian) coordinates, Ek are the material (Lagrangian) coordin- 
ates and t is the time. The partial derivatives of the radius vector of the points of the 
space 

(1.2) 

define, respectively, the fixed Eulerian and moving Lagrangian basis. The tensor T with a 
typical distribution of the indices can be represented in invariant form /l/ as 

T=Tk,,,EkF= TAkEtEAm .m (1.3) 

The velocity vector of a particle with material coordinates is given by 

(1.4) 

The time derivative of the tensor T canbeobtained after establishing the formulas for differ- 
entiation of the basis vectors 
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